BAB II TINJAUAN PUSTAKA

2.1 Rivew Penelitian Terdahulu

No	Judul Jurnal	Permasalahan	Metode Penelitian	Hasil dan Pembahasan	Persamaan
1	PERBANDINGAN	-'Bagaimana	Pengumpulan Data,	Precast half slab	Persamaan perhitungan
	SISTEM STRUKTUR DAN	perbandingan kinerja	Permodelan	memiliki fleksibilitas	struktur, biaya dari
	BIAYA PELAT LANTAI	sistem struktur pelat	menggunakan software	yang lebih besar dari	precast half slab
	METODE PRECAST HALF	lantai antara metode	safe12, Perhitungan	pelat konvensional	
	SLAB DAN METODE	precast half slab dan	plat precast dan	dengan mutu beton	
	KONVENSIONAL	metode konvensional	konvensional secara	yang sama. Hal ini	
	(M ochamad Romy,	berdasarkan	manual, Penyusunan	karena precast half slab	
	2016)	perhitungan manual	RAB, Analisis	memiliki displacement	
		dengan menggunakan	Perbandingan	yang lebih besar	
		bantuan software		dibandingkan dengan	
		Safe12.		pelat konvensional	
		-' Bagaimana		biaya pekerjaan pelat	
		perbandingan Rencana		lantai dengan	
		Anggaran Biaya pelat		menggunakan metode	
4		lantai pada		precast half slab	
		pembangunan gedung		memberikan biaya yang	
		hotel Pesona antara		lebih murah	
		metode precast half		dibandingkan dengan	
		slab dan metode		total biaya pekerjaan	
		konvensional.		pelat lantai dengan	
		Konvensional.		metode konvensional	
2	ANALISIS	Dagaineana	Dan du letivita e tempera	Untuk waktu	Managan digir Malaku
	PERBANDINGAN PELAT	Bagaimana perbandingan kedua	Produktivitas tenaga kerja dalam		Menganalisis Waktu dan Biaya metode
	LANTAI KONVENSIONAL	metode tersebut dalam	pelaksanaan proses	pelaksanaan pekerjaan pelat lantai dermaga	Konvensional dan
	DAN PRACETAK	pengaplikasian di	konstruksi pada pelat	006 pelabuhan tanjung	Precast
	DITINJAU DARI ASPEK	lapangan dalam aspek	lantai dermaga 006	priuk dengan metode	. Todast
	BIAYA DAN WAKTU	waktu dan biaya	dalam memilih metode	beton pracetak half	
	PADA DERMAGA 006		beton precast atau	slab dapat menghemat	
	TERM INAL OPERASI 1		beton konvensional.	waktu 7 minggu dari	
	PELABUHAN TANJUNG			metode konvensional.	
	PRIOK, JAKARTA UTARA			Ini dikarenakan antar	
				pekerjaan install dan	
		Produktifitas pekerja	Biaya dan waktu	pengecoran topping Dari hasil Analisis yang	
		dalam pengaplikasian	pelaksanaan yang	didapat untuk	
		kedua metode tersbut	dibutuhkan dalam	pekerjaan pelat lantai	
			penyelesain pekerjaan	dermaga 006	
			pada penggunaan	pelabuhan tanjung	
			material beton precast	priok dengan metode	
			atau konvensional	beton konvensional dan	
				beton Pracetak.	
				M etode pracetak	
				didapat penghematan	
				sebesar 29.82% atau 15,308,130.41 jika	
				dibandingkan dengan	
				metode beton	
				konvensional. Ini	
			Pemilihan material	karenakan pemakaian	
			yang tepat guna dan	bekisting yang bisa	
			tepat biaya untuk	dipakai 5 kali.	
			pelaksanaan		
			penyelesaian proses		
			konstruksi.	I	i

3	Ctudi Apolicis	Darmaralahan nad-	Darrianan Bakaria	nonggungan alat b	Mangatahui Waktu dan
5	Studi Analisis	Permasalahan pada	Persiapan Pekerjaan,	penggunaan alat berat	Mengetahui Waktu dan
	Penggunaan Alat Berat	pekerjaan	Mengkonfigurasi	(crane) sebagai alat	Daya pengangkatan crane
	(Crane) Sebagai Alat	pengangkatan (lifting)	pekerjaan crane, berat	angkat untuk instalasi	crane
	Angkat Untuk Instalasi	berdasarkan kondisi	angkat yang dtentukan,	vessel LP dan HP	
	Vessel LP Dan HP	existing area kerja	menentukan crane	Separator Proyek PLTP	
	Separator Proyek PLTP	adalah bagaimana	yang benar,	Rantau Dedap bahwa	
	Rantau Dedap.	menentukan posisi		jenis crawler crane	
		crane, bagaimana		dengan kapasitas yang	
		menentukan kapasitas		lebih kecil yatu main	
		crane, bagaimana		crane 250 ton + tailing	
		menentukan jenis		crane 100 ton adalah	
		lifting gear yang dapat		setara secara	
		menahan beban		fungsi dengan jenis	
		payload tanpa melebihi		mobile crane dengan	
		safety factor.		kapasitas yang	
				lebih besar yatu main	
				crane 450 ton + tailing	
				crane 250 ton.	
				Namun, crawler crane	
				lebih tepat digunakan	
				untuk instalasi vessel LP	
				dan HP Separator	
				Proyek PLTP Rantau	
				Dedap	
				karena lebih unggul	
				dibandingkan jenis	
				mobile crane pada	
4				kriteria Lifting Capacity,	
4	Komparasi Peneraoan	Permasalahan pada	Perhitungan biaya dan	Penggunaan plat beton	Meng <mark>etahu</mark> i waktu dan
	Plat Pracetak Vs	penerapan berbagai	waktu yang dilakukan	pracetak	biaya pada pekerjaan
	Konvensional Pada	metode, dan mencari	berdasarkan analisa		precast maupun
	Bangunan Gedung		pekerjaan	langsung bekerja pada	konvensional
	Bertingkat (Wulfram I.	dan biaya antara	pekerjaan	lantai sebelumnya. 3.	Konvensional
	Ervianto,2010)	konvensional dan		Plat beton pracetak	
	El vialito,2010)	pracetak pada gedung		menghasilkan	
		bertingkat		permukaan yang halus	
		Dertingkat		sehingga tidak perlu	
				dilakukan finishing lagi.	
		PRO	PATRIA	4. Waktu pemasangan	
				jauh lebih cepat	
				dibanding cara konvensional.	
				konvensional.	
(I					

5	Perbandingan Penggunaan Tower Crane dengan Mobil Crane Ditinjau Dari Efisiensi Waktu Dan Biaya Sebagai Alat Angkat Utama Pada Pembangunan Gedung (Hari Jamanto, 2015)	Menganalisis Perbandingan Tower Crane dan mobil crane dari segi biaya maupun efisiensi waktu	Persiapan Pekerjaan, Mengkonfigurasi pekerjaan crane, berat angkat yang dtentukan, menentukan crane yang benar,	Waktu pelaksanaan tower crane untuk mengerjakan pekerjaan pada gedung ini lebih cepat dibandingkan dengan waktu yang diperlukan oleh mobil crane.	Mencari Efisiensi waktu pekerjaan mobil crane
6	Validasi penggunaan panel half slab pada perencanaan Ruko di Sumatra Utara (Johanes Tarigan, 2022)	Perhitungan Struktur Pembuatan Panel Hal Slab	dilakukan perhitungan pembebanan yang akan digunakan dalam analisis sesuai dengan fungsi bangunan dan peta gempa untuk wilayah Sumatera Utara. Analisis struktur yang digunakan untuk desain struktur half slab precast adalah dengan metode pendekatan seperti balok dengan 6 tipe jenis perletakan sehingga menghasilkan desain penulangan.	yaitu tower crane dan mobil crane mempunyai kelebihan dan kekurangan yang berbeda dari segi kapasitas operasi dan pembiayaan yang dikeluarkan. pelat rencana yang mengacu pada nilai minimum diperoleh dari kondisi pelat pada setiap kemungkinan kondisi tumpuan yaitu	Perhitungan Struktur Panel Precast Half Slab
7	Studi analisis penggunaan alat berat (crane) sebagai alat angkat untuk instalasi equipment deodorizer di proyek cpo Plant (Priyo Hartono, 2015)	Perhitungan Efisiensi alat berat	Menghitung Besaran Jarak, Beban maupun waktu pengangkatan crane dengan pengamatan langsung di lapangan	sebesar 16 cm. Perhitungan analisis momen dengan kondisi pelat sebelum komposit dan sesudah komposit menggunakan metode pendekatan seperti balok yang dilakukan untuk setiap kemungkinan jenis perletakan menunjukkan momen terbesar terdapat pada HS-3 dengan perletakan type 1, besaran momen yang diperoleh senilai 504,507 kgm sebelum komposit dan 708,333 kgm sesudah komposit.	Perhitungan Penggunaan Alat Berat Crane
8	Analisis Perbandingan iaya dan waktu pekerjaan plat beton konvensional dengan panel beton (Atep Maskur)	Berapa besar perbandingan biaya pelaksanaan pekerjaan pelat lantai beton konvensional dan panel lantai beton? dan Berapa besar perbandingan waktu pelaksanaan pekerjaan pelat lantai beton konvensional dan panel lantai beton.	dengan cara melakukan observasi secara langsung ke lapangan untuk mendapatkan data proyek dan dokumentasi pelaksanaan pekerjaan. Kemudian meminta data teknis dan RAB proyek kepada kontraktor dan menganalisis perbandingan	dibutuhkan untuk menyelesaikan pekerjaan Pelat Lantai Konvensional yaitu 27 hari dan waktu	Analisis Waktu Pekerjaan Pelat

	1	 	<u> </u>		
9	Analisis Perbandingan	Berlandaskan pada	Mencari efisiensi dari	waktu pelaksanaan	Perhitungan Half Sllab
	Efisiensi waktu dan	latar belakang tersebut	berbagai metode	pekerjaan slab dengan	
	biaya antara metode	yang mendasari	pelaksanaan pelat dan	menggunakan metode	
	konvensional slab,	penulisan penelitian,	mencari yang mana	slab konvensional 229%	
	precast half slab dan	bisa dikatakan juga	yang lebbih efisien dari	dibanding dengan	
	precast full slab pada	bahwa penulis ingin	berbagai metode	fullslab, sedang kan	
	proyek bangunan hotel	mencari metode	pelaksanaan	metode half slab	
	beringkat di Surabaya	pelaksanaan slab/plat		waktunya hanya	
	(Julistyna Tistogondo,	beton yang cocok untuk		berbeda 20% lebih	
	2018)	mempersingkat waktu		lama	
		pelaksanaan,		dibanding full slab.	
		menimalisir biaya		Dan harga per m2	
		produksi, dan memiliki		untuk precast full slab	
		kualitas mutu yang		Rp	
		baik. Proyek Supermall		500.589 , precast half	
		Pakuwon Indah Phase 3		slab Rp 485.851 , dan	
		Surabaya sendiri adalah		slab	
		salah satu mega proyek		konvensional Rp	
		dari Pakuwon Grup		444.917. Sementara	
		yang terletak di		presentase	
		Surabaya Barat		deviasi harga per m2	
		Surabaya barat		terhadap precast full	
				slab dari	
				precast half slab adalah	
				3% dan dari slab	
				konvensional adalah	
				11%.	
				1170.	
10	PERBANDINGAN	Apakah <mark>ada perb</mark> edaan	Pen <mark>elitian ya</mark> ng	Berdasarkan aspek	Perhti <mark>unga</mark> n Biaya
	ANGGARAN BIAYA	dari segi biaya	dilakukan adalah	biaya pembesian, pelat	
	(RAB) PELATLANTAI	bekisting, biaya	pen <mark>elitian ko</mark> mparatif,	beton boundeck lebih	
	KONVENSIONAL	pembesian, biaya	yaitu penelitian yang	murah 56% jika	
	DENGAN PELAT LANTAI	pengecoran, biaya	bersifat	dibandingkan dengan	
	BOUNDECK (Zaedar	material, biaya upah,	membandingkan.	pelat beton	
	Gazalba, 2020)	biaya sewa alat, waktu	Penelitian ini dilakukan	konvensional. 🗈	
		pelaksanaan dan	untuk membandingkan	Berdasarkan aspek	
		rekapitulasi Rencana	persamaan dan	biaya pengecoran, pelat	
		Anggaran Biaya antara	perbedaan dua atau	beton boundeck lebih	
		penggunaan pelat	lebih fakta-fakta dan	murah 18%	
		boundeck dan pelat	sifat-sifat objek yang di	dibandingkan dengan	
		lantai konvensional ?	teliti berdasarkan	pelat beton	
			kerangka pemikiran	konvensional.	
'			tertentu. Pada	ZIJIOIUII	
			penelitian ini		
			variabelnya masih		
1			mandiri tetapi untuk		
1					
			sampel yang lebih dari		

2.2 Definisi dan Terminologi

Menurut Ervianto (2006), precast dapat diartikan sebagai suatu proses produksi elemen struktur bangunan pada suatu tempat/lokasi yang berbeda dengan tempat/lokasi dimana elemen struktur tersebut akan digunakan.

Jenis-jenis plat precast adalah:

1. Solid Flat Slab atau precast Full Slab yaitu plat precast dengan ketebalan penuh sesuai dengan tebal plat yang ditentukan.

- Hollow Core Slab yaitu sama dengan plat precast Full Slab. Yang membedakan terdapat lubang rongga pada sisinya yang berfungsi untuk meringankan beban struktur.
- 3. Half Slab yaitu plat precast yang masih membutuhkan pengecoran lagi (overtopping). Misalnya direncanakan plat lantai dengan ketebalan 12 cm, maka digunakan plat precast dengan ketebalan 7 cm dan pengecoran overtopping setebal 5 cm.

Adapun keunggulan dan kelemahan beton precast:

- A. Keunggulan pemakaian beton precast
 - a) Kualitas beton yang lebih baik. Beton precast mempunyai mutu yang lebih baik karena proses produksinya dilaksanakan dengan mesin dan pengawasan yang lebih cermat.
 - b) Pelaksanaan konstruksi relative tidak terpengaruh cuaca. Beton precast diproduksi dalam lingkungan pabrik yang terlindung dari pengaruh panas matahari maupun hujan sehingga dalam cuaca yang bagaimanapun, proses produksi tetap berlangsung.
 - c) Menghemat pemakaian bekisting
- B. Kelemahan pemakaian beton precast:
 - a) Transportasi

Proses pemindahan hasil produksi beton precast dari pabrik ke lokasi proyek. Proses transportasi precast dari pabrik ke lokasi, yang harus dipertimbangkan adalah dimensi dan berat precast. Karena sangat berpengaruh terhadap kemampuan alat angkutnya dan transportasinya.

- b) Tahap Pengangkatan
 - Proses penyatuan komponen bangunan yang berupa beton precast untuk menjadi bagian dari bangunan tersebut. Karena tahap ini dibutuhkan alat bantu seperti crane.
- c) Tahap PenyambunganDiperlukan perencanaan yang detail pada bagian sambungan.

2.3 Konsep Dasar dan Teori

Konsep dan dasar teori dari penyusunan tugas akhir ini meliputi pelat lantai sistem konvensional dan pracetak

2.3.1 Pelat Lantai

Menurut Ervianto (2006), Pelat lantai merupakan struktur tipis yang dibuat dari beton bertulang dengan bidang yang arahnya horizontal dan beban yang bekerja tegak lurus pada bidang struktur tersebut sehingga pada bangunan gedung pelat ini berfungsi sebagai diafragma atau unsur pengaku horizontal yang sangat bermanfaat untuk mendukung ketegaran balok portal. Dalam perencanaannya, pelat lantai harus dibuat rata, kaku dan lurus agar pengguna gedung dapat dengan mantap memijakan kakinya. Hal-hal yang diperhitungkan mencakup beban tetap saja yang bekerja dalam waktu yang lama. Hal lain seperti beban tak terduga gempa, angin, getaran, dll. tidak diperhitungkan.

Pelat lantai dapat dibedakan menjadi dua jenis, yaitu pelat satu arah dan pelat dua arah. Pelat lantai satu arah hanya ditumpu pada kedua sisi yang berseberangan dan memilik bentang panjang (ly) dua kali atau lebih besar dari pada bentang pendek (lx). Sedangkan pelat dua arah ditumpu oleh balok pada kedua sisinya dan perbandingan antara bentang panjangnya (ly) dan bentang pendeknya (lx) kurang dari dua.

Ada pun dua metode yang akan dibahas pada kasus ini, yaitu metode pelat lantai konvensional dan half slab pracetak.

2.3.1.1 Pelat Konvensional

Kusuma (1997) berpendapat bahwa, pelat konvensional adalah pelat yang cara pengerjaannya yang sangat acap digunakan pada dunia kontruksi. Yang realisasinya yaitu membuat cetakan struktur yang akan digunakan untuk kontruksi dan di cor langsung pada tempat pengerjaan proyek tersebut.

Kelebihan sistem konvensional:

- 1. Akomodasi biaya yang cukup murah
- 2. Minimnya penggunaan alat berat

Kekurangan sistem konvensional:

- 1. Membutuhkan pekerja yang relative banyak
- 2. Waktu pengerjaan yang lebih lama
- 3. Kurang terjaminnya mutu yang di inginkan

Metode konvensional yang digunakan salah satunya yaitu struktur pelat lantai yang dikerjakan ditempat pengecoran langsung yang mencakup keseluruhan dengan menggunakan plywood sebagai bekisting dan scaffolding sebagai perancah.

2.3.1.2 Pelat Precast half slab

Menurut Ervianto (2006) pracetak adalah teknologi konstruksi struktur beton dengan komponen-komponen penyusun yang dicetak terlebih dahulu pada suatu tempat khusus (off site fabrication). komponen-komponen tersebut disusun dan disatukan terlebih dahulu (pre-assembly), dan selanjutnya dipasang di lokasi (installation).

Menurut Romi (2016), Metode half slab adalah metode pekerjaan pelat lantai yang separuh struktur pelat lantainya dikerjakan dengan sistem precast dan separuhnya lagi dengan cara pengecoran ditempat. Bagian precast bisa dibuat di pabrik atau tempat fabrikasi yang telah disediakan di area proyek lalu dikirim ke lokasi pemasangan untuk dipasang, selanjutnya dilakukan pemasangan besi tulangan bagian atas lalu dilakukan pengecoran separuh pelat ditempat. Kelebihan dari metode ini yaitu dapat mengurangi waktu pengerjaan dan biaya pengeluaran khususnya penekanan pada biaya kebutuhan bekisting.

2.3.2 Perbandingan Sistem Konvensional dan Pracetak

Tabel 2. 1 Perbandingan Sistem Konvensional dengan Pracetak

Item	Konvensional	Pracetak
Desain	Sederhana	Membutuhkan wawasan
		yang luas terutama yang
		ada kaitannya dengan
		fabrikasi sistem,
		transportasi serta
		pelaksanaan atau
		pemasangan komponen,
		sistem sambungan dan
		se <mark>bagain</mark> ya
Bentuk <mark>dan ukurannya</mark>	Efisien untuk bentuk	Efisien untuk bentuk
	yang tidak teratur dan	yang teratur/relati f besar
	bentangbentang yang	dengan jumlah bentuk-
	tidak mengulang.	bentuk yang berulang
W <mark>aktu pelaksanaa</mark> n	Lebih lama	Lebih cepat, karena
		da <mark>pat d</mark> ilaksanakan
		seca <mark>ra pararel sehi</mark> ngga
		hemat waktu 20-25%
Teknologi Pelaksanaan	Konvensional Konvensional	But <mark>uh tenaga yang</mark>
		me <mark>mpunyai keahli</mark> an
Koordinasi Pelaksanaan	Kompleks	Lebih sederhana, karena
		s <mark>emua pengecora</mark> n
	PRO PATRIA	elemen struktur pracetak
		telah dila <mark>kuka</mark> n di
		<mark>pa</mark> brik.
Kontrol Kerja	Bersifat kompleks, serta	Sifatnya lebih mudah
	dilakukan dengan cara	karena telah dilakukan
	terus menerus.	pengawasan oleh
		kualitas kontrol di
		pabrik.
Kondisi lahan	Butuh area yang relati f	Tidak memerlukan lahan
	luas karena butuh	yang luas untuk
	adanya penimbunan	penyimpanan material
	material dan ruang	selama proses
	gerak.	pengerjaan konst ruksi
		berlangsung, sehingga
		lebih bersih terhadap
		lingkungan
Kondisi cuaca	Banyak dipengaruhi oleh	Tidak dipengaruhi cuaca
	keadaan cuaca.	karena dibuat di pabrik

Kecepatan/akurasi ukuran	Sangat tergantung keahlian pelaksana.	Karena dilaksanakan di pabrik, maka ketepatan ukuran lebih terjamin.
Kualitas	Sangat tergantung banyak faktor, terutama keahlian pekerja dan pengawasan.	Lebih terjamin kualitasnya karena di kerjakan di pabrik dengan menggunakan sistem pengawasan pabrik.

(Sumber: www.Ilmusipil.com)

Sebagai elemen struktur yang langsung mendukung beban penghuni sebuah bangunan gedung, plat lantai harus sesuai dengan ketentuan dan peraturan yang berlaku. Adapun tahap perhitungan half slab menurut adalah sebagai berikut :

A. Penulangan Pelat

Perhitungan penulangan akan direncanakan dalam dua tahap yaitu tahap pertama penulangan sebelum dan kedua penulangan setelah . Untuk kemudian dipilih tulangan yang layak untuk digunakan, yang memperhitungkan tulangan yang paling kritis diantara kedua kondisi di atas.

Tahapan yang akan digunakan untuk menentukan penulangan lentur pelat antara lain:

- a. Menentukan data data d, Fys, F'c dan Mu
- b. Menentukan batasan rasio tulangan dan menghitunga rasio tulangan yang disayaratkan sebagai berikut :

Tabel 2.2 Rasio Penulangan Pelat

SUMBER	PERSAMAAN
SNI 03-2847-	$\rho \min = \frac{1,4}{f_{N}}$
2013 pasal	fy
10.5.1	
SNI-03-2847-	$\rho b = \frac{0.85 x \beta x fc'}{600 (600 c)}$
2013 Lampiran	$\int \int $
B.8.4.2	
SNI-03-2847-	$\rho max = 0.75 \rho b$
2013 Lampiran	
B.10.3.3	
Wang, C.	$m = \frac{fy}{}$
Salmon hal. 55	0,85 x f c t
pers.3.8.4.a	
Wang, C.	ρ perlu = $\frac{1}{2}(1-$
Salmon hal. 55	$\rho perlu = \frac{1}{m} \left(1 - \frac{1}{m} \right)$
pers.3.8.4.a	$\sqrt{1-\frac{2mRn}{fy}}$
	V 12 /

(sumber: SNI 2847-2013)

Berdasarkan SNI 03-2847-2013 pasal 10.5 (3) Jika perlu ρperlu< ρmin maka ρperlu dinaikkan 30%, sehingga:

$$\rho$$
pakai = 1,3 x ρ perlu

c. Menentukan Luas Tulangan (As) dari ρ yang didapatkan Berdasarkan Wang
 (1998)

 $As = \rho perlu \times b \times d$

Keterangan:

Fy = kuat leleh baja non prategang (Mpa)

F'c = kuat tekan beton (Mpa)

Mu = momen terfaktor (Nmm)

Pb = rasio tegangan yang memberikan tegangan seimbang

B = faktor yang didefinisikan dalam SNI 03=2847-2013 sebesar 0,85

ρ<mark>perlu = rasio tu</mark>langan yang diperlukan

ρmax = rasio tulangan yang maksimal

pmin = rasio tulangan yang minimum

2.4 Tahap Pelaksanaan

Menurut Ervianto (2006), tahap pelaksanaan beton pracetak dijelaskan mulai dari tahap pembuatan sampai dengan tahap overtoping antara lain sebagai berikut:

2.4.1 Tahap Produksi atau Pibrikasi

Pada tahap produksi atau pabrikasi ini dilakukan di area lapangan, yang jadwal pembuatannya berjalan sendiri, jadi tidak mengganggu jadwal inti. Area pembuatan/pabrikasi ini nantinya bersebelahan dengan area penumpukan.

Hal penting dalam faktor produksi adalah penentuan prioritas komponen yang akan lebih dahulu dipabrikasi harus disesuaikan dengan rencana kerja dan metode kerja yang akan direncanakan. Untuk mencapai kesesuaian pemilihan komponen,

maka dibutuhkan koordinasi antara pabrikator dengan instalator. Area produksi harus tertata dengan baik, mulai dari tempat penumpukan material dasar, proses pengecoran, proses rawatan beton serta penyimpanan beton pracetak

2.4.2 Tahap Pengiriman

Pada tahap pengiriman material pracetak ini sangat diperlukan koordinasi antara pihak kontraktor dan suplier pracetak. Pihak suplier menigirm material setelah ada instruksi dari kontraktor, karena hal tersebut sangat berkaitan dengan metode pelaksanaan di lapangan. Jumlah elemen pracetak mengenai bentuk dan ukuran sesuai dengan konfirmasi pihak kontraktor.

Pengiriman material pracetak ke lokasi menggunakan truk trailer. Sebelum pengiriman pihak suplier mengadakan survey untuk melihat akses jalan yang akan dilalui. Dalam pengangkatan perlu diperhatikan penempatan posisi material pracetak di atas angkutan untuk menghindari hal hal yang membahayakan, contohnya: tergelincir, berubah dudukan, material retak, dsb.

2.4.3 Tahap Penumpukan DRO DATRIA

Beberapa alasan sebagai penyebab dilakukan penumpukan material precast:

- a. Jumlah beton precast yang akan dipasang sangat banyak, sehingga tidak memungkinkan untuk pemasangan pelat secara langsung dari trailer ke titik pelat rencana.
- b. Lokasi proyek cukup luas, sehingga tersedia tempat penumpukan pelat dimana tempat ini diusahakan tidak mengganggu aktivitas proyek.

2.4.4 Tahap Pemasangan dan Pengangkatan

Pada tahap pemasangan beton precast harus direncanakan sematang mungkin, baik dari segi peralatan, pekerja, dan siklus pemasangannya. Alat berat yang digunakan untuk mengangkat pelat precast adalah mobile crane, kondisi dari mobile crane sendiri berpengaruh selama proses pemasangan untuk mendapatkan hasil yang maksimal.

Hal-hal yang perlu diperhatikan sebelum pemasangan balok dan pelat precast, antara lain:

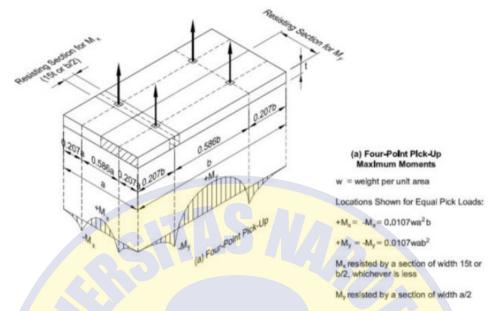
- a. Untuk peralatan crane seperti mobile crane harus sudah siap terlebih dahulu dilokasi proyek sebelum beton precast disiapkan.
- b. Perencanaan posisi mobile crane dilapangan dimana panjang jangkauannya harus dapat mencapai setiap bagian dari struktur pada beton precast yang akan dipasang.
- c. Dalam menjalankan tugasnya operator dibantu tenaga kerja untuk penempatan beton precast pada posisi akhir.
- d. Memberikan ruang kerja bagi aktivtas crane selama pemasangan beton precast agar tidak terganggu aktivitas proyek lain.

2.4.4.1 Titik Angkat dan Sokongan

A. Pengangkatan Pelat

Menurut PCI Design Handbook (2004) Dalam pemasangan pelat pracetak harus pula diingat bahwa pelat akan mengalami pengangakatan sehingga perlu direncanakan tulangan angkat untuk pelat.

pelat dengan 8 titik angkat. Maka akan terjadi momen momen pada elemen pelat sebesar w= beban per unit luas


(a) Empat Titik Angkat

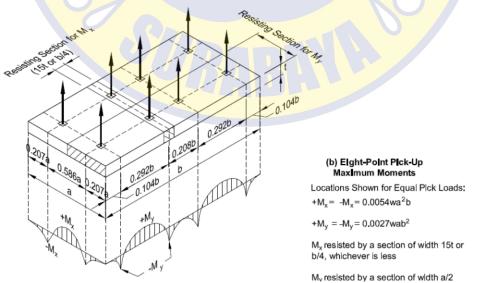
Maksimum momen pendekatan

$$+Mx = -Mx = 0.0107 \text{ w a 2 b}$$

$$+My = -My = 0.0107 \text{ w a b } 2$$

Mx ditahan oleh penampang dengan lebar yang terkecil dan 15t atau b/2 . My ditahan oleh penampang dengan lebar a/2

Gambar 2.1 Empat Titik Sokongan (Sumber: PCI Design Handbook)


(b) Delapan Titik angkat

Maksimum momen pendekatan

$$+Mx = -Mx = 0.0054w$$
 a2 b

$$+My = -My = 0,0054$$
 w a b 2

Mx ditahan oleh penampang dengan lebar yang terkecil dan 15t atau b/2. My ditahan oleh penampang dengan lebar a/2

Gambar 2.2 Delapan Titik Sokongan (sumber: PCI Design Handbook)

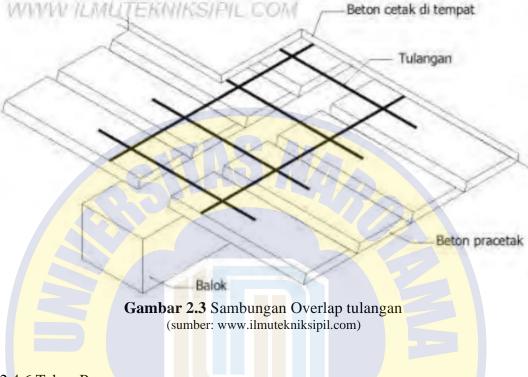
Dalam perencanaan beban statis ekivalen perlu dikalikan faktor pengali sebagai faktor pengaman ketika proses pengangkatan / erection. Besarnya angka pengali sebagai berikut :

Tabel 2.3 Angka Pengali beban statis ekivalen untuk menghitung gayapengangkatan dan gaya dinamis

Fase	Angka Pengali	
Pengangkatan dari bekisting	1.7	
Pengangkatan ke tempat	1.2	
penyimpanan		
Transportasi	1.5	
Pemasangan	1.2	

(Sumber: PCI Design Handbook)

2.4.5 Tahap Penyambungan


Menurut Ervianto (2006) cara penyambungan yang dapat dilakukan dibedakan menjadi dua yaitu sambungan basah dan sambungan kering. Masing-masing sambungan mempunyai keuntungan dan kerugian sehingga penentuan jenis sambungan tergantung dari berbagai faktor, yang diantaranya adalah faktor biaya. In-situ concrete joints (cor Setempat)

Sambungan Jenis ini dapat diaplikasikan pada komponen-komponen beton pracetak:

- 1. Kolom dengan kolom
- 2. Kolom dengan balok
- 3. Plat dengan balok

Metode pelaksanaannya adalah dengan melakukan pegecoran pada pertemuan dari komponen-komponen tersebut. Diharapkan hasil pertemuan dari tiap komponen tersebut dapat menyatu. Sedangkan untuk cara penyambungan tulangan dapat digunakan coupler ataupun secara overlapping. Sambungan ini menggunakan tulangan biasa sebagai penyambung / penghubung antar elemen beton baik antar pracetak maupun pracetak dengan cor setempat dengan perhitungan sambungan sesuai SNI 2847-2013 sebesar 12D. Elemen pracetak yang sudah berada ditempatnya akan dicor bagian ujungnya untuk menyambungkan elemen satu

dengan yang lainnya agar menjadi satu kesatuan yang monolit. Sambungan jenis ini biasa disebut dengan sambungan basah seperti terlihat pada gambar

2.4.6 Tahap Pengecoran

Pengecoran over topping dilakukan setelah pemasangan pembesian wire mesh dilakukan. Kebutuhan baja tulangan pada toping dalam menampung gaya geser horizontal direncanakan dengan menggunakan geser friksi (shear friction concept).

2.5 Peralatan yang dipakai

Peralatan mempunyai peran yang penting guna kelancaran proses pelaksanaan pekerjaan. Begitu juga dengan sistem beton precast. Meskipun precast dibuat di pabrik, namun untuk proses pengiriman dan pemasangan menggunakan alat bantu berupa peralatan konstruksi.

Kejelian dalam pemilihan dan perencanaan penggunaan peralatan dapat mengakibatkan efisiensi yang tentunya akan berpengaruh besar terhadap biaya pelaksanaan.

Menurut Rostiyanti (2008), Keuntungan-keuntungan dengan menggunakan alat-alat berat antara lain:

1. Waktu Pengerjaan lebih cepat.

Mempercepat proses pelaksanaan pekerjaan, terutama pada pekerjaan yang sedang dikejar target penyelesaiannya.

2. Tenaga besar

Melaksanakan jenis pekerjaan yang tidak dapat dikerjakan oleh tenaga manusia

3. Ekonomis

Karena alasan efisiensi, keterbatasan tenaga kerja, keamanan dan faktor-faktor ekonomis lainnya.

4. Mutu hasil kerja baik.

Dengan memakai peralatan berat, mutu hasil kerja menjadi lebih baik dan presisi.

Macam-macam peralatan yang digunakan adalah sebagai berikut:

2.5.1 Tower Crane

Menurut Rostiyanti (2008), tower crane adalah alat berat yang utama diperlukan di setiap pekerjaan konstruksi. Tugas dari alat ini adalah mengangkat dan mengangkut bahan dan atau material yang akan segera dikerjakan pada suatu proyek secara vertikal ke suatu tempat yang tinggi maupun horizontal dengan ruang gerak yang terbatas.

Pemasangan tower crane harus direncanakan terlebih dahulu menurut pertimbangan yang umum karena tower crane akan dipasang di tempat yang tepat selama proyek berlangsung. Hal-hal umum yang harus dipertimbangkan diantaranya adalah:

- a. Kondisi lapangan yang tidak luas
- b. Ketinggian tidak terjangkau oleh alat lain
- c. Pergerakan alat yang tidak perlu sehingga dapat diganti oleh tower crane

Berikut adalah cara perhitungan produktivitas TC:

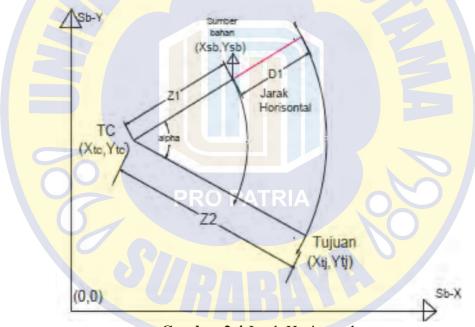
1. Produktifitas TC

Waktu Tempuh

Waktu siklus TC = waktu tempuh angkat + waktu tempuh kembali + waktu rotasi + waktu ikat + waktu lepas Waktu Total jenis pekerjaan = Σ waktu siklus tiap jenis pekerjaan

Jarak tempuh horizontal

Jarak tempuh TC ke bahan = Z1 = [(YTC - YSB)2 + (XSB - XTC)2]1/2Jarak tempuh TC ke tujuan Z2 = [(YTC - YTJ)2 + (XTJ - XTC)2]1/2


Jarak horizontal = D1 = |Z2 - Z1|

Keterangan:

YTC,XTC = Koordinat titik pusat TC (0,0)

XTJ,YTJ = Koordinat TC ke lokasi tujuan

XSB, YSB = Koordinat TC ke sumber bahan

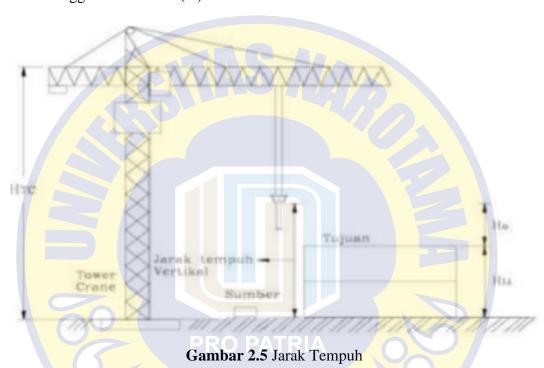
Gambar 2.4 Jarak Horizontal

Kecepatan Horisontal

 $kec\ trolley = (kec.trolley\ max - kec.trolley\ min)/\ (kapasitas\ maximum\ beban\ TC$ $-0)\ x\ berat\ yang\ diangkat\ TC$

Waktu tempuh horizontal

waktu horisontal angkat = Jarak horizontal/ kecepatan trolley yang digunakan waktu horisontal kembali = Jarak horizontal/ kecepatan trolley max Jarak tempuh vertikal


Jarak Tempuh Vertikal= HLT – HSB+ H0

Keterangan:

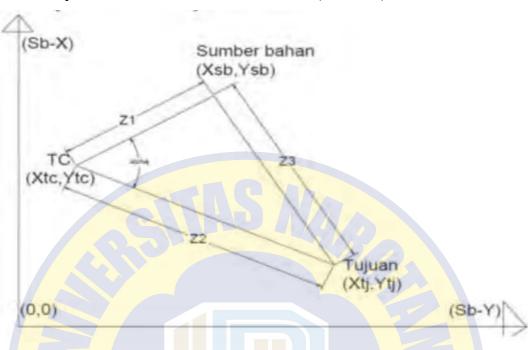
HSB = Elevasi Sumber Bahan (m)

HLT = Elevasi Lantai tujuan (m)

Ho = Tinggi Penambahan (m)

Kecepatan Vertikal

kec trolley = (kec.hoist max-kec.hoist min) /(kapasitas maximum beban TC-0) x berat yang diangkat TC


Waktu tempuh vertical

waktu vertikal angkat = Jarak vertikal /kecepatan hoist yang digunakan
waktu vertikal kembali = Jarak vertikal /kecepatan hoist max

Jarak tempuh rotasi

Jarak tempuh rotasi berupa sudut rotasi yang terbentuk antara sumber bahan –TC-lokasi tujuan (°/menit).

Sudut tempuh rotasi = $\cos \alpha = Z12 + Z22 - Z32 / (2xZ1xZ2)$

Gambar 2.6 Jarak Tempuh Rotasi

Kecepatan Rotasi

kec swing = (kec.swing max-kec.swing min)/ (kapasitas maximum beban TC-0)
x berat yang diangkat TC

PRO PATRIA

Waktu tempuh rotasi

waktu rotasi angkat = Jarak rotasi /kecepatan swing yang digunakan waktu rotasi kembali = Jarak rotasi /kecepatan swing max

Produktifitas perjam dihitung dari produktifitas rata rata dari tower crane berdasarkan volume pekerjaan per siklus waktu.

$$Q = q \times N \times Ek$$

Keterangan:

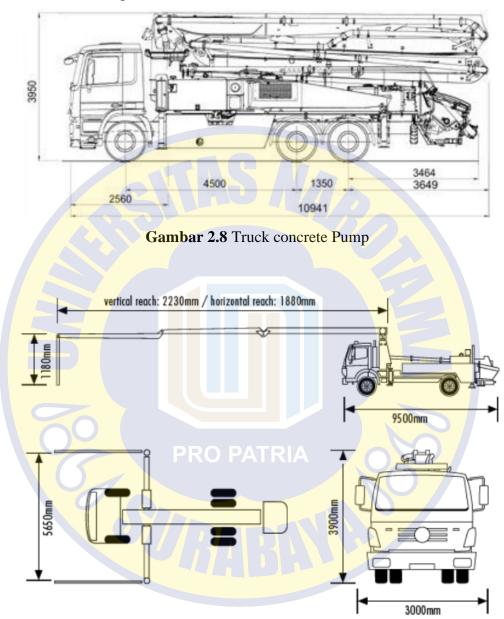
Q = produktifitas per satuan waktu

q = kapasitas produksi alat per satuan waktu

N = T/WS (jumlah trip per satuan waktu)

WS = waktu siklus

T = satuan waktu (jam, menit, detik)


Ek = efisiensi kerja

2. Kapasitas Tower Crane

Kapasitas angkatan tower crane ditentukan oleh radius tower crane yang digunakan, semakin besar radius yang digunakan maka kapasitas angkatan tower crane semakin kecil dan begitu sebaliknya. Tower crane yang digunakan dalam tugas akhir ini adalah tower crane dengan radius 10 m dengan kapasitas angkat 0.017 ton.

2.5.2 Concrete Pump

Gambar 2.9 Tampak Concrete Pump

Concrete Pump Truck atau truk pemompa campuran beton adalah sebuah peralatan berat yang digunakan dalam proyek bangunan. Alat ini berupa sebuah truk yang dilengkapi dengan pompa dan lengan yang berfungsi untuk memompa campuran beton ke tempat tempat yang sulit dijangkau. Biasanya truk ini dipakai di pengecoran lantai pada ketinggian tertentu yang sulit dicapai

Jika lantai yang akan dicor tingginya lebih tinggi daripada lengan concrete pump truck. Kita dapat menambahkan pipa yang disambung secara vertikal agar dapat mencapai ketinggian yang dibutuhkan. Pipa tambahan dan lengan truk ini dapat dipasang dengan berbagai kombinasi seperti kombinasi vertical, horizontal, ataupun dengan kombinasi miring. Concrete Pump Truck sangatlah berguna dalam hal memindahkan campuran beton ke berbagai tempat, khususnya pada tempat yang cukup sulit untuk dijangkau. Resiko banyaknya beton yang akan terbuang dalam proses pemindahannya pun bisa dikatakan kecil.

Hal penting didalam perencanaan kebutuhan alat-alat berat yang akan dipakai untuk pelaksanaan suatu pekerjaan atau proyek adalah cara pokok pemilihan peralatan.

A. Produktifitas Concrete Pump

Beton yang digunakan pada proyek ini langsung dipesan dari pabrik ready mix beton. Maka membutuhkan alat bantu untuk pekerjaan pengecoran. Durasi pekerjaan tergantung dari kapasitas alat:

Gambar 2.10 Concrete Pump Model IPF90B-5N21

	Model	IPF90B-5N21	
Concrete Pump	Type	Hydraulic SingleActing	
		Horizontal Double	
		Piston	
	Delivery Capacity	10 - 90 m3 /h	
	Delivery Pressure	max. 53.0 kgf/cm2	

	Max Conveying	Vertikal Horizontal
	Distance	
	100A Pipe	80m 320m
	Max Size Of Aggregate	
	125 A	40 mm
	Concrete Slump Value	5 - 23 cm
	Cylinder diameter x	Ø195mm x 1400mm
	stroke	
	No. Of cylinder	2
	Hopper Capacity x	0.45m3 x 1280 mm
	vertical height	
Concrete Pipe Washing	System	Water Washing
	Туре	Hydraulic reciprocating
		piston
	Discharge pressure x	65 kgf/cm2 / 40 kgf/cm2
	delivery	x 320 L/min
	Tank Capacity	Water tank 400 L
Boom	Type PATRIA	3 Section Hydraulic Fold
		Type
0.0	Length	17.4 m
\ 0//	Vertical Higher	20.7 m
	Operating Angle	
	Top Section	0 - 270 " x 5.75 m
	Middle Section	0 - 180" x 5.3 m
	Bottom Section	0 - 90" x 6.5 m
	Working Swing Angle	3600 Full swing
	Concrete Pipe Diameter	125 A
	Flexible Hose Diameter	125 A or 100 A
Truck Chassis	Model	ISUZU: P – CVR14K
	Engine	220PS / 2300 rpm

	Fuel Tank	300 L
Weight	Vehicle Weight	14715 kg
	Max. Number of persons	3 Person (165 kg)
Max. Load 400 kg		400 kg (water)
	Gross Vehicle Weight	15300 kg

Sumber: Instruction Manual for Concrete Pump Model IPF90B-5N21

Perhitungan kapasitas produksi pengecoran sesuai dengan panjang pipa pengecoran yang digunakan, sesuai dengan spesifikasi concrete pump yang tertera pada tabel 2. 4 adalah :

A.1 Perhitungan Delivery Capacity:

A.1.1 Horizontal Equivalent Length:

- Bottom section = 6.5 m
- Middle Section = 5.3 m
- Top Section = 5,75 m
- Flexible Hose = 5 m

Total Vertical Equivalent Length = 22,55 m

Dengan diketahuinya total Vertical Equivalent Length dengan nilai slump 10 cm didapatkan Delivery Capacity yaitu:

Gambar 2.11 Grafik Delivery Capacity Pengecoran

Didapatkan nilai Delivery Capacity yaitu sebesar 90 m 3 /jam.

Kapasitas produksi = Delivery Capacity $x \to x$

Q = DC (m3 / jam) x Ek Keterangan

- DC = 90 m 3 /jam sesuai dengan gambar grafik 2.11
- Ek (efisiensi Kerja) terdiri dari :

Nilai = 0,83 (cuaca terang, panas, berdebu)

Nilai = 0,70 (kecakapan operator cukup baik)

Nilai = 0,75 (pemeliharaan alat kondisi baik)

A.2 Waktu pelaksanaan pengecoran

Waktu pengecoran tidak hanya pada kapasitas produksi concrete pump dalam menyalurkan beton saja, tetapi juga terdiri dari beberapa tahapan yaitu:

A.2.1 Waktu persiapan Waktu persiapan untuk pekerjaan pengecoran terdiri dari :

Pengaturan posisi truck mixer dan concrete pump selama = jumlah truck mixer x 5 menit/truck mixer

Pengaturan pipa =

jumlah truck mixer x 5 menit/truck mixer

PRO PATRIA

Idle (waktu tunggu) pompa = jumlah truck mixer x 5 menit/truck mixer

Pergantian antar truck mixer apabila pengecoran membutuhkan lebih dari 1 truck

mixer =

jumlah truck mixer x 5 menit/truck mixer

Waktu untuk pengujian slump = jumlah truck mixer x 5 menit/truk mixer.

A.2.2 Waktu operasional pengecoran

Waktu operasional adalah waktu pada saat pengecoran itu berlangsung. berikut adalah rumus untuk menghitung waktu pengecoran :

= Volume pengecoran (m3) / Kapasitas produksi (m3/jam)

A.2.3 Waktu pasca pelaksanaan

Pembersian pompa = 20 menit

Bongkar pipa = 15 menit

Persiapan kembali = 5 menit

Total = $40 \text{ menit} \sim 0.67 \text{ jam}$

Maka total waktu pasca pengecoran adalah 40 menit

Total waktu = waktu persiapan + waktu pengecoran + waktu pasca pelaksanaan

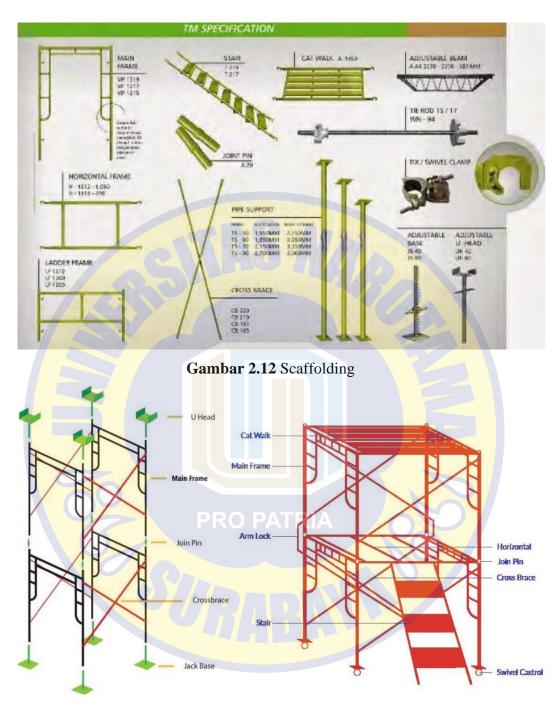
2.5.3 Schafolding

Menurut Ervianto (2010) ,schafolding adalah alat bantu seperti tangga yang terbuat dari besi maupun baja yang digunakan untuk menggapai lokasi yang lebih tinggi.. Komponen-komponen terdiri dari rangka pipa dengan berbagai bentuk dan ukurannya antara lain :

Walk thru frame

Ladder frame

Cantilever frame


Cross brace

U-head jack

Base jack

Joint pin

Dan pelengkap pembantu extra lainnya, Schafolding dapat memberikan efisiensi harga yang lebih murah karena dapat digunakan secara berkali-kali disbanding material yang lain seperti kayu geram.

Gambar 2.13 Bagian – Bagian Scaffolding

2.6 Penjadwalan Proyek

Menurut Ervianto (2005), Penjadwalan adalah proses untuk memberikan efisiensi waktu pada suatu pekerjaan sehingga membuat segala aktifitas dapat teratur dan tepat waktu.

Salah satu contoh metode penjadwalan adalah PDM. Menurut Soeharto (1999), PDM dikenal adanya konstrain. Satu konstrain hanya dapat menghubungkan dua node, karena setiap node memiliki dua ujung yaitu ujung awal atau mulai = (S) dan ujung akhir atau selesai = (F). Maka di sini terdapat empat macam konstrain yaitu:

- 1. Finish-to-start (FS) ; Suatu aktivitas tidak dapat dimulai selama aktivitas sebelumnya belum berakhir.
- 2. Start-to-start (SS); Suatu aktivitas tidak dapat dimulai selama aktivitas lain belum dimulai.
- 3. Finish-to-finish (FF); Suatu aktivitas tidak dapat diakhiri selama aktivitas lain berakhir.
- 4. Start-to-Finish (SF); Suatu aktivitas tidak dapat diakhiri selama aktivitas A belum dimulai...

2.7 Analisa Biaya

Menurut Sastraatmaja (2006), analisa biaya dilakukan untuk memperoleh perkiraan biaya pelaksanaan suatu pekerjaan dengan berdasarkan sumber daya yang ada dan metode pelaksanaan tertentu. Dalam melakukan analisa biaya terlebih dahulu harus mengetahui spesifikasi yang digunakan dalam perencanaan konstruksi tersebut. Misalnya untuk volume menggunakan satuan m3 (meter kubik). Sedangkan untuk berat menggunakan satuan kg.

Dalam proyek-proyek besar seperti proyek konstruksi, pengoperasian alat harus dipertimbangkan dari segi biaya yang disediakan untuk penggunaan alat, estimasi waktu, keuntungan yang diperoleh dan pertimbangan lainnya, sedangkan biaya pekerjaan bisa dihitung dengan Rencana Anggaran Biaya (RAB). Untuk menghitung RAB dapat digunakan rumus sebagai berikut : RAB = \sum [(Volume Pekerjaan) x Harga Satuan Pekerjaan]

Dalam rencana anggaran biaya terdapat dua komponen yang dibutuhkan pertama-tama untuk memulai perhitungan yaitu komponen biaya langsung (direct cost) seperti kebutuhan pembayaran gaji, pembelian material, alat yang

akan digunakan dan biaya tidak langsung (indirect cost) seperti overhead, profit dan tax.

2.7.1 Komponen Biaya Langsung (*direct cost*)

Direct Cost adalah biaya yang mudah ditelusuri ke cost object. Bila cost object-nya suatu produk, sebagai contoh adalah meja tulis, maka kayu merupakan direct cost terhadap cost object meja tulis karena kayu dengan mudah dapat ditelusuri pemakaiannya ke meja. Dengan kata lain dapat dengan mudah dihitung berapa kebutuhan meja akan kayu. Pembebanan direct cost ke cost object disebut tracing. Komponen biaya langsung terdiri dari:

A. Biaya bahan / material

Merupakan harga bahan atau material yang digunakan untuk proses pelaksanaan konstruksi, yang sudah memasukan biaya angkutan, biaya loading dan unloading. Biaya pengepakkan, penyimpanan sementara di gudang, pemeriksaan kualitas dan asuransi.

B. Upah tenaga kerja

Biaya yang dibayarkan kepada pekerja atau buruh dalam menyelesaikan sutu jenis pekerjaan sesuai dengan keterampilan dan keahliannya.

C. Biaya peralatan

Biaya yang diperlukan untuk kegiatan sewa, pengangkutan, pemasangan alat, memindahkan, membongkar dan biaya operasi, juga dapat dimasukkan upah dan operator mesin dan pembantunya.

2.7.2 Komponen Biaya Tak Langsunng (indiect cost)

Indirect Cost adalah biaya yang tidak mudah ditelusuri ke cost object sekalipun dapat ditelusuri tapi dengan cara yang tidak ekonomis. Bila cost objectnya meja maka biaya listrik yang dipakai untuk penerangan merupakan indirect cost terhadap cost object meja karena berapa penerangan yang diserap oleh meja sulitlah untuk diukur. Pembebanan indirect cost ke cost object disebut allocation. Biaya tidak langsung terdiri dari :

A. Overload umum

Overhead umum biasanya tidak dapat segera dimasukkan ke suatu jenis pekerjaan dalam proyek itu, misalnya sewa kantor, peralatan kantor dan alat tulis menulis, air, listrik, telepon, asuransi, pajak, bunga uang, biaya-biaya notaris, biaya perjalanan dan pembelian berbagai macam barang-barang kecil.

B. Overload proyek

Overhead proyek adalah biaya yang dapat dibebankan keada proyek tetapi tidak dapat dibebankan kepada biaya bahanbahan, upah tenaga kerja atau biaya alat-alat seperti misalnya asuransi, telepon yang dipasang di proyek, pembelian tambahan dokumen kontrak pekerjaan, pengukuran (survey), surat-surat ijin dan lain sebagainya. Jumlah overhead berkisar antara 12% sampai 30%.

C. Profit

Merupakan keuntungan yang didapat oleh pelaksana kegiatan proyek (kontraktor) sebagai nilai imbal jasa dalam proses pengadaan proyek yang sudah dikerjakan. Secara umum keuntungan yang diset oleh kontraktor dalam penawaranya berkisar antara 10% sampai 12%.

D. Pajak

Berbagai macam pajak seperti PPN, PPh dan lainnya atas hasil operasi perusahaan.

PRO PATRIA