CHAPTER II

LITERATURE REVIEW

Construction projects rely on skilled construction experts to bring them through to successful completion. Professional construction managers work on capital projects, which are typically lengthy, large-scale, complex, high budget undertakings. These projects are made up of three parties: the Owner, Architect, and General Contractor. Few owners have the skills or staff to pay close attention to all the details, so they turn to construction managers/project managers (CMs) to ensure success. The CM skillfully collaborates with and provides oversight to these three parties to deliver the project on time, at or under budget, and to the owner's expected standard of quality.

They typically do not perform the actual construction tasks themselves, but act as advisors to assuring the project progresses smoothly and achieves the owner's business objectives. The CM often leads a team of specialists to oversee different aspects of the project, such as scheduling, safety, cost estimating, design, quality assurance, value engineering, commissioning, construction inspection, risk management, and more. Reused and Recycle has been known as extraordinary compared to other answer for reuse the waste materials into reused substance and transform into usable materials. In Malaysia, there is a tremendous potential in reuse and reuse of development squander into elective materials that is usable in Malaysian Construction industry if executed effectively. In a significant number of the created nations, this has been achieved.

2.1 Important Elements of Worker Safety Practices

A safety and health management system (SHS) is a program designed to reduce the risk to health and safety in the workplace and reduce the likelihood of an injury by ensuring employees know how to work safely.

2.1.2 Work Safety

Work safety is important to avoid accident and risk. It is important to give the right communication to each worker and break their working time during construction site working. It is natural to want to get the job done quickly, but accidents can happen.

And these are some points that has to be conducted

- 1- Always wear personal protective equipment (PPE)
- 2- Limit crowd sizes in work areas.
- 3- Keep work areas clear.
- 4- Use best practices for scaffolding work.
- 5- Keep a communication device on hand.
- 6- Make sure to label and properly store all chemicals.
- 7- Create a culture of safety. (ST, 2020)

2.1.3 Human Resource

HRM is the process of managing people within an organisation. It is primarily concerned with ensuring that a project has sufficient human resources, with the correct skill-sets and experience, for the project to be successfully completed. HR managers must be able to identify and document project roles and responsibilities, and develop a plan to determine their human resource requirements.

HRM typically involves the following core activities:

- 1 providing safety managers
- 2 Role of safety specification.
- 3 Work safety planning.

2.2 Construction Project Management (Cpm)

Development venture administration is the specialty of coordinating and organizing human and material assets for the duration of an undertaking by utilizing present day administration methods to accomplish foreordained destinations. It involves arranging, coordination, and execution of a development venture, regardless of whether it is farming, private, business, institutional, mechanical, overwhelming common, or natural. It requires solid aptitudes in correspondence, profound learning of the building procedure and the capacity to issue comprehend. It is an overwhelming field, requiring information in a wide range of zones like back, intervention, law, business, and the sky is the limit from there.

Table 2.2: Advantages and Disadvantages Of (Cpm)

Advantages of Construction Project Disadvantages of Construction **Management** Project Management • Focal points: In this course of action, the •While Construction Management may development chief expect the hazard, so it be beneficial in some circumstances, has a motivating force to act to the owners should recognize that it might proprietor's advantage and to productively also have some disadvantages. oversee costs, considering GMP overwhelms •The most significant disadvantage of duty of the director's Construction Management would be the many organization. contracting arrangements is that significant portions of the total services for which the Construction Manager is remunerated are not subject competitive bidding.

Source: (ukessay, 2022)

Construction Project Management (GMP) is beneficial in some circumstances, but it has some disadvantages. The most significant disadvantage is that significant portions of the total services for which the Construction Manager is remunerated are not subject to competitive bidding. This makes it much less likely that the Owner will be charged the lowest possible 'market rates' for these services. Additionally, the open-ended nature of many Constructions Management contractual arrangements exposes the Owner to the risk of unanticipated cost increases. Contractual arrangements that may have this effect should be avoided.

Alternatively, under CM as Constructor, and especially when no fast tracking is intended, these concerns can be mitigated by establishing a guaranteed maximum price or converting the Construction Management services contract to a stipulated price construction contract prior to the commencement of construction. However, this security comes at a price, as it may include a 'cushion' to cover risks which may or may not occur.

2.3 Construction Safety Division and Construction Work Section

The Construction Safety Division (CSD), DOSH Headquarters and Construction Work Section (CWS), DOSH States enforce safety, health and welfare legislations in the construction site. The CSD and CWS use regulatory interventions to influence, encourage and advise employers and prosecute those who have failed to fulfill their duties. These interventions are used to develop the Construction Industry's OSH Strategic Plan (CIOSP), taking into account other factors such as the industry's size and demographic, accident statistic and risk. The nine regulatory interventions are implemented at different phases, determined by the state of the risk.

2.4 The Role of a Project Manager In Construction Management

Project management planning, cost management, time management, Quality Management Contract Administration Safety management Construction management professional practices, safety professional develop and implement accident prevention programs, advise management on company policies and

governmental regulations, evaluate effectiveness of existing safety programs, train management in safety observation techniques, materials are checked off when they arrive, and house is set out correctly on the site. Modern operations processes have been implemented but are not fully formalized, suggesting that businesses are introducing these practices to keep up with competitors rather than push their own business objectives forward.

2.5 Class of Contractor In Malaysia

In Malaysia, all the contractors have been categorized to the limitation of their budget. The highest class would be class A contractor follows with B, C, D, E and the lowest one, which involves with maintaining project would be class E. Below is table 2.1 stated the project limits for each of the classes (dezan, 2020)

Table 2.3: Class of Contractor in Malaysia.

Class	Project limit (RM)
A	More than RM 10,000,000
В	RM 5,000,001 to RM 10,000,000
С	RM 2,000,001 to RM 5,000,000
D	RM 500,001 to RM 2,000,000
E	RM 200,001 to RM 500,000
F	to RM 200,000

Source: (othman, 2021)

2.5.1 Class A Contractor

Class A is a contractor responsible for RM 10,000,000+ projects, such as the KLCC twin tower project. They must appoint an eligible engineer to be part of the team to ensure the design of the building is built well.

2.5.2 Class B Contractor

The contractor in Class B is a contractor that involves with projects is between RM 5,000,001 to RM 10,000,000 This contractor responsible on more to second high right building after class A, and general contractor license (othman, 2021)

2.5.3 Class C Contractor

The Class C License fee is between RM 2,000,001 to RM 5,000,000 There are no bonding or insurance requirements for licensing in the state of Selangor at this time, and A Class C Contractor is any contractor that has single contracts from RM or more but less than RM 10,000,000. (othman, 2021)

2.5.4 Class D Contractor

The class D license fee is between RM 500,001 to RM 2,000,000, and The Class D license entitles the licensee to contract for labor or for labor and materials involving only one trade. A Class D licensee may be licensed to perform more than one specialty. (othman, 2021)

2.5.5 Class E Contractor

A Class E general contractor license holder is authorized to perform any nonstructural alteration work to any building or structure in the City, including all work authorized by license types fee between RM 200,001 to RM 500,000. (othman, 2021)

2.5.6 Class F Contractor

Class F is In an effort to help the class F. contractor, the government has fixed that all government contract works amounting to. RM100,000 and below should be given to Class F contractors (othman, 2021)

2.6 The Safety in Construction (Malaysia)

In 1994, the Occupational Safety and Health Act (OSHA) was gazette in Malaysia to reduce industrial accident rates. This paper examines the poor safety record of

the construction industry due to a confluence of factors, including the presence of foreign workers. It highlights the confusing signals sent out to the industry by DOSH and the Construction Industry Development Board (CIDB) arising from conflicting instructions and initiatives. The paper draws upon some of the data compiled during a national study conducted in 1996–1997 that examined foreign and local site operatives in Malaysia. The employer has huge responsibilities under the law to manage the safety and health risks in a construction project, which resulted from his business activity. To do this, CSD and CWS use various regulatory interventions.

2.7 The Usage of Industrialiser Building System (Ibs)

The Integrated Building System (IBS) was deployed in Malaysia to accelerate the construction of housing projects and improve the quality and affordability of the projects. It is a construction technique in which components are manufactured in a controlled environment and transported, positioned and assembled into a structure with minimal site work. Despite the IBS being well-known and accepted by most construction firms, wet construction is still widely regarded as a conventional and safe option due to its higher costs and slower production rates.

2.8 Law During Construction Safety

This paper aims to identify and highlight the types of fall hazards that are most commonly found at construction sites today and the most effective solutions to overcome them. A study was conducted to investigate the root causes of fall hazards in construction site. The data was collected through questionnaire survey and analyzed using Likert scaling method. The finding was that most fall hazards are caused by roof falls and scaffolding falls, and workplace inspection is the most effective measure to reduce the fall hazards. This study aims to improve the problem of fall hazards in cyber jaya by establishing a safety and health committee.

The committee will keep track of measures taken to ensure safety and health of persons at the place of work, investigate any matter that a member of the

committee or a person employed thereat considers is not safe or is a risk to health, and attempt to resolve any matter referred to above. It also has the power to request the Director General to undertake an inspection of a place of work for that purpose, and if it is alleged that a person has contravened or failed to comply with a provision of the Act, the approved industry code of practice shall be admissible in evidence in the proceedings.

2.8.1 Electrocution

According to OSHA (2020) is occupational safety and health act electrocution injuries accounted for 82 construction worker deaths in 2016, which is 8.3% of the 991 fatalities caused by construction site hazards. Electrocution is death by electric shock caused by exposure to lethal amounts of electrical energy. Electrocutions most often happen when workers do not know about all of the energized power sources at their location.

And sometimes, workers are so focused on their tasks, they don't realize that they may be in danger of being crushed, squeezed, caught, compressed, or pinched between two or more pieces of equipment or machinery or against a wall or a floor. (msllegal, 2022)

PRO PATRIA

2.8.2 Being Struck by Falling Objects

According to OSHA, "Struck" is defined as: injuries produced by forcible contact or impact between the injured person and an object or piece of equipment. Struck-by hazards in construction cause accidents such as the following: A construction worker was hoisting bricks in a bucket to the top of a building.

Trenches are often required on construction sites, and if a trench collapses with a construction worker inside, that worker could be injured by falling tools or even be buried alive in the surrounding soil.

Finally, an often-overlooked cause of construction site accidents is the physical condition and health of the construction workers themselves. (msllegal, 2022)

2.8.3 Trapped During Excavation

Construction workers are at risk of injury due to falls into a trench or excavation, tripping over equipment, sudden collapse of unsupported excavation walls, excavated material or other objects falling on workers, exposure to underground services or overhead electrical cables unstable nearby structures such as other buildings, mishandled or poorly placed materials, hazardous atmospheres (noxious gases/lack of oxygen) toxic, irritating or flammable and explosive gases, incidents involving vehicles and other mobile equipment. To assist with evacuation, it is important to study the emergency evacuation routes posted on all floors and have a backup or alternate path out of the building. Elevators and bridges should be avoided in emergencies and should not be used in the event of fire or earthquake. Know the location of the nearest manual fire alarm pull station in your building and how to activate it. Know if any co-workers, students, or visitors will require assistance in exiting the building and be prepared to provide whatever help is necessary. Persons with disability-related evacuation needs should discuss their needs with their Area Coordinator in advance. Emergency Refuge Areas are designated "safe havens" for people with mobility impairments and are typically located in stairwells of multi-storied buildings. Know where the emergency Assembly Point and Evacuation Areas are located, and the Evacuation Routes you should follow to reach them. Know how to turn off machinery and equipment at your worksite which if left running for an extended period may create additional safety hazards.

2.9 Advantage of (IBS)

The advantages of using industrialized building system Many researches have mentioned the advantages of using IBS system in there works. This study can list the advantages of IBS as follows:

Skilled workers with specific scope of works improve efficiencies and reduce errors due to controlled environment, better material selection, and mechanized technology.

The industrialized building systems can reduce boredom and monotony by reducing labor costs, minimizing waste material, and using components' moulds for different projects.

Time faster completion of projects due to advance off-site preparations and simplified installation process. Manageable construction schedule by planning control-estimated lead-time and forecasted down time. Off-site production can start while the construction site is under earthworks. Safety Promote safe and systematic factory working environment. Cleanness and neatness IBS provide cleaner sites.

- 1. Systematic components storage and timely material delivery (Just-in-Time principles).
- 2. Reduction of construction material at site.
- 3. Reduction of waste materials at site duo to casting in factory Minimizing the use of formworks and props at site because of casting in factory.

According to CIDB compares to conventional construction method, the industrialized building system has the following advantages:

- 1. Less construction time IBS requires less construction time because casting of precast element at factory and foundation work at site can occur simultaneously and the work at site is only the erection of IBS components. This leads to earlier occupation of the building.
- 2. Cost savings The formwork of IBS components are made of steel, aluminum or other materials that allows for repetitive use and this leads to considerable cost savings.
- Saving in labor When the IBS components are produced in factory, higher degree of utilization of machine is permitted and the use of labor will be reduced and lead to saving in labor cost.
- 4. Less labor at site The use of IBS will reduce the construction process at site and consequently reduce the number of labor required at site.
- Optimized use of material The utilization of machine during the production of IBS components lead to higher degree of precision and accuracy in the production and consequently reduce material wastage.

6. Higher quality and better finishes An IBS component have higher quality and better finishes due to the careful selection of materials, use of advanced technology, better and strict quality assurance control since production in factory is under sheltered environment. (ipm.my, 2020)

2.10 Disadvantages of (IBS)

IBS has many benefits, but its initial cost is high due to the cost of setting up the factory, standardizing the sizes, improving quality of the products, casting beds and support machinery. Adoption of IBS requires the governance of a specific organization, which is costly in terms of standardization of sizes, improving the building regulations, and improving the products.

The extra cost is needed to train foreign unskilled and semi-skilled laborers to do IBS construction work. However, if the worker decides not to stay in the country, it will be wasteful and only large projects can be cost effective. (Lim, P.C, 2006). The Industrial Building System (IBS) has a high investment cost, leading to an unhealthy competition among small and medium industries. It also has a disadvantage in site accessibility, as the road surface must be in good condition and temporary site access must exist for heavy vehicles. These disadvantages make IBS a poor choice for public housing. Although there are a lot of advantages of IBS, however there are limitations for this system to be use too. Nothing in this world is perfect, so as using IBS, disadvantages of IBS are as follows:

High initial capital cost

- The initial capital cost of IBS is usually higher than conventional method.
- The initial cost is includes the casting beds, cost of constructing the factory and support machinery.

2.11 Review of Previous Researches

NO	Jurnal\Title	Author	Year	Findings
1	Article Complexity / A Social Network Study of Stakeholder Viewpoint on Metro Construction Safety Risk Factors	Ying Lu, Yu Zhang	2020	The urban ground system's traffic strain has been significantly reduced by the metro's rapid expansion, but the frequency of metro construction accidents is also rising year after year. Because to the intricate building process of the metro, whenever an accident happens, casualties and property loss are exceedingly serious. Accidents during the building phase of the metro were mostly caused by safety risk issues that were raised by various stakeholders. From a stakeholder's perspective, this study developed a social analysis network of safety risk elements in metro development the viewpoint. Six stakeholders and 25 safety risk variables were identified based on 42 accident incidents and relevant literature, and theconnections between stakeholders and safety risk factors were also established. A social network of safety risk variables in metro construction was built using social network analysis, and quantitative analysis was done using density, degree centrality, betweenness centrality, and cohesive subgroup

2	Springer	Tao Shen,	2019	The construction safety prediction
	Article /	Yukari		model based on the improved BP
	Design of	Nagai &		neural network algorithm is
	building	Chan Gao		proposed in this study to address the
	constructio			safety issue facing the construction
	n safety			sector. The traits of the construction
	prediction			business were examined first.
	model			Construction is a labor-intensive
	based on			sector of the economy, and it is
	optimized			defined by a number of things,
	BP neural			including high investment,
	network			protracted construction times, and
	algorithm			challenging environmental
				conditions. Because of the growing
				significant security issue, society as
				a whole is becoming increasingly
				concerned. Second, a building
				construction safety prediction model
				based on a crude set-genetic-BP
				neural network was developed after
				a summary of the problem of
				managing building construction
				safety was made. Eventually, a mix
				of multiparty dialogue, empirical
		550	B 4 T B	investigation, and model
		PRO	PAIR	comparison served to validate the
	0//			model. The findings demonstrated
				that the model successfully
				decreased casualties by correctly
		CFR.		predicting the risk variables that
				would arise throughout the
				construction process. Hence, the
				model is practicable, effective and
				accurate.

		1.517.6	2021	
3	The	M.N.Gonz	2021	The strategic plan of the
	leadership	ález		European Union aims to better
	position of	García,		safeguard the millions of its
	the primary	M.Segarra		employees from diseases and
	preventative	Cañamare		accidents at work. The
	managemen	s,		construction industry is the center
	t document	B.M.Ville		of this study since it is one of the
	on	na		industries with the greatest
	constructio	Escribano,		accident rates, hardships, and
	n sites,	A.Romero		risks. Its goal is to determine the
	according	Barriusod		efficacy of the primary
	to Science			management tool that
	Direct and			construction works have, the
	Constructio'			Health and Safety Plan, based on
	s health and			the legislative framework that
	safety plan			governs health and safety in the
				sector. In this research, the
				Autonomous Community of
				Castile-La Mancha, Spain,
				examined 3600 health and safety
	—)			plans. The findings demonstrate
				that the Health and Safety Plans
				are papers that exhibit serious
	50 6			flaws and do not adhere to legal
		DDO	DATE	standards, endangering the
		PRO	PAIR	management of prevention in the
				workplace and, as a result, the
				health and safety of its
				employees.
L				1 7

4	Causes of	Nor	2020	Accidents involving the use of
	Accidents	Haslinda	2020	scaffolding were one of the major
	Involving	Abas,		categories of fatal accidents at
	Scaffolding	Muhamma		construction sites, according to the
	at Building	d Ridhwan		Department of Occupational Safety
	Sites,	Noridan,		and Health's (DOSH) reports on
	Journal of	Muhamad		fatal accident cases. If activities
	Technology	Hanafi		involving working at height were
	Manageme	Rahmat,		involving working at neight were involved, scaffolding was often
	nt and	Nor Ain		employed. This research gives the
	Business,	Abas, Nur		examination of the key causes of
	Transportati	Qamarin		accidents involving scaffolding at
	on	Quintin		construction sites based on the
	Research	411		perspectives of safety staff It was
	Record			involved in distributing the
				questionnaire surveys to safety
				employees who were working at
				the building sites in Johor. The
				Average Mean Index and Relative
				Importance Index were used to
				examine the data (RII). According
				to the report, disobeying safety
				regulations, performing inadequate
				inspections, and having an unstable
				base are the leading causes of
		PRO	PATE	scaffolding accidents. The results
				of this study are planned to be used
				by construction employers as a
				guide in understanding the
				elements that lead to accidents
				using scaffolding

	E	W -: T	2021	Washanat in dame to 1 to 1
5	Examining	Wei Tong	2021	Workers' inadequate understanding
	the Links	Chen,		of how their activities affect safety
	Between	Hew		on the building site is frequently
	Safety	Cameron		blamed for occupational accidents
	Climate and	Merrett,		in the construction industry. This
	Worker	Ying-Hua		study investigates the connection
	Safety	Huang,		between the safety environment
	Behavior	Theresia		(SC) and personnel safety behavior
	on	Avila		(SB) of employees engaged in
	Taiwanese	Bria,		construction on Taiwanese building
	Constructio	Ying-Hsiu		sites. The study found a strong
	n Sites,	Lin		correlation between SC and SB at
	MDPI			Taiwanese construction sites, and
	journal			that SC level had a favorable effect
				on SB participation and perceptions
				of general safety. The performance
				of SB was discovered to be better
				the greater the SC cognition of
				Taiwan's construction employees
				was. The factor that had the
				strongest correlation with SB was
				the "safety commitment and safety
				training" component. Safety
				education had a significant effect on
				SB's thinking as well. Therefore,
		PRO	PATE	the organizational culture and
	(5)			
				effectively improve SC and worker
				SB on building construction sites in
		UR		Taiwan along with the successful
				implementation of safety education
				and training, potentially reducing
				the impacts of the underlying
				organizational factors behind
				safety-related incidents.

6	Implementa tion difficulties of COVID- 19 safety measures at South African building sites, Journal of Facilities Management	Christophe r Amoah, Fredrick Simpeh	2021	The results show that there are many obstacles to implementing COVID-19 safety measures at the construction site, including worker ignorance of the regulation, poor personal protective equipment (PPE) provided by contractors, a lack of compliance, sanitizing construction materials, difficulty sharing tools and equipment, superstition (COVID-19 is for a specific group of people), and adhering to social distancing rules, among others. These problems have, therefore, impeded their endeavor to properly adhere to the safety procedures in line with the COVID-19 safety protocol at the project sites now under development.
7	Study of ergonomic risk factors in the constructio n sector, Materials Today Journal	G.K.Abina ya Ishwarya, D.Rajkum arb	2021 PATR	The engineer or managing person will organize the machinery, tools, skilled labor, and their surroundings to be in order and customary to execute the work in an efficient manner as a result of the ergonomics research. The necessity for effective communication between the management level and worker level should be there in order to increase the success rate of ergonomics implementation. Even with safety safeguards, employees in the construction industry nevertheless experience stress because of physical and psychological problems. The risk factors that influence the gap between top and bottom level in various psychological and administrative factors, analysis of ergonomics measurement in context with questionnaire survey carried out in five construction sites, the corrective measures, and difficulties in implementing ergonomics were discussed in this paper. The proposed flowchart for the construction industry incorporates the right use of ergonomics for both administration and employees.

	Ι			T=
8	Automation	Nipun	2020	Traumatic brain injuries (caused by
	in	D.Nath,		falls and electrocution) and collisions
	Constructio	Amir		are the main reasons for construction-
	n Journal /	H.Behzad		related fatalities (resulted from struck
	Deep	an,		by objects). The U.S.
	learning for	Stephanie		Occupational Safety and Health
	site safety:	G.Paala		Administration (OSHA) mandates
	Real-time			that contractors enforce and
	identificatio			continuously monitor the proper use
	n of			of workers' personal protection
	personal			equipment (PPE), such as hard hats
	protective			and vests. This study provides three
	equipment			deep learning (DL) models built on
				the You-
				Only-Look-Once (YOLO)
				architecture to check employees' PPE
				compliance in real-time, such as
				whether they are wearing hard hats,
				vests, or bothIn the initial method, an
				algorithm identifies the workers, hats,
				and vests; then, a machine learning
				model (such as a neural network or
				decision tree) checks to see if each
				identified worker is correctly
				donning a hat or vest. In the second
		PRO	PATE	method, a single convolutional neural
				network (CNN) architecture is used
				by the algorithm to simultaneously
				identify specific workers and confirm
				PPE compliance. In the third method,
				the algorithm first isolates the
				workers from the background of the
				input image. These isolated
				employees are then cropped and
				identified using CNN-based
				classifiers (such as VGG-16, ResNet-
				50, and Xception) based on the
				presence of PPE clothing. The
				internal picture dataset, which was
				produced utilizing crowdsourcing
				and web mining, serves as the

training ground for all models. The dataset Pictor-v3 includes 4,700 examples of employees wearing different PPE component combinations and 1,500 annotated photos. The second technique, which can process 11 frames per second (FPS) on a laptop, is shown to have the best performance, with a mean average precision (mAP) of 72.3% in real-world circumstances. This makes it appropriate for realtime detection and a strong contender for use with light-weight mobile devices. The third strategy, which combines the classifiers from VGG-16, ResNet-50, and Xception in a Bayesian framework, is the most competitive alternative in terms of performance (67.93% mAP). Yet, the first method processes at the fastest rate of 13 FPS with 63.1% mAP. To the development and promote evaluation of more cutting- edge applications for assessing safety compliance and advancing future research in automation construction. the crowd-sourced Pictor-v3 dataset and all trained models are made accessible to the public.

0	Cons a set	Мастана	2022	ince they belong to memore musicate
9	Smart	Maozeng	2022	ince they help to manage projects
	constructio	Xu,		on-site in a way that is effective,
	n sites: A	Xiuying		efficient, and of the highest caliber,
	promising	Nie, Heng		the development of smart
	strategy to	Lic, Jack		construction sites using smart
	enhance on-	C.P.		technologies for real-time
	site HSE	Cheng,		interconnection, communication, and
	managemen	Zhongya		interaction has become a topic of
	t	Mei		interest for researchers and
	performanc			practitioners in the architecture,
	e, Journal			engineering, and construction
	of Building			industry. Nevertheless, there hasn't
	Engineering			been much thought put into
				employing smart technology to
				manage all aspects of health, safety,
				and the environment (HSE). To
				close this gap, this study uses a
				systematic approach to find the
				papers (results = 325) related to the
				on-site use of smart technologies for
				HSE, and then conducts a
				quantitative and qualitative analysis
				on their research trend and
				interestsThe research status quo and
				trends are shown by a bibliometric
		PRO	PATE	analysis of publication numbers by
	(5)			year, nation and area, and journal,
				and the topic's interests are
				demonstrated by a keyword co-
				occurrence analysis. Several smart
				technologies, including approaches
				and gadgets, are grouped for on-site
				HSE management goals based on
				these interests. Additionally, a
				complete framework for smart
				-
				technologies in HSE management
				and a plan for HSE-oriented smart
				construction site formation are put
				forward.

10	A risk	Muizz	2020	The number of fatal accidents and
	assessment	O.Sanni-		deaths in the construction sector
	strategy for	Anibire,		each year makes it one of the most
	improving	Abubakar		dangerous sectors in the world.
	constructio	S.Mahmo		Despite the establishment and
	n safety	ud,		implementation of safety initiatives
	performanc	Mohammad		in several nations, the problem
	e is	A.Hassana		does not appear to have been
	published	in,		resolved. The goal of this research
	in the	Babatunde		is to provide a risk assessment
	Safety	A.Salamic		methodology that can be applied to
	Science	7 I.Sulume		improve construction project
	.Journal			safety. For the study's risk ratings
	ourner			and weights for the various
				construction accidents, pair-wise
				comparisons and weighting-by-
				ranking surveys were used, and
				possible reasons behind them. On
				15 sizable building sites spread
				across Saudi Arabia's Eastern
				Province, information was gathered
				from safety specialists. According
				to the study, "falling items"
	707			accidents have the greatest risk
				score, and the project site's extreme
		PRO	PATR	winds are their primary cause. An
				ongoing effort to build a parking
				lot using the developed technique.
				The results demonstrated that trips,
				slides, and falls performed the best
				in terms of safety. Also, according
				to six sigma evaluation, the
				average project safety performance
				was 2.33 sigma, meaning that
				228,739 accidents may happen out
				of every million opportunities.
				The research also offered
				suggestions for enhancing the case
				study's safety performance.

		ı	
Automatio nin constructio n / Evidence- driven sound detection for early warning and accident detection inthe constructio n industry	Yong-Cheol Lee, Moeid Shariatfar ,Abbas Rashidi, Hyun Woo Lee	S PATE	Safety has always been a top priority in the construction business due to the high risk of fatalities and huge financial damage brought on by accidents. In response, various research have sought to create novel methodologies and state-of-the-art technologies for conducting autonomous safety surveillance of construction work zones such as vision-based monitoring. Nevertheless, the technologies already in use and those that have been proposed, such as human inspection, are only capable of consistent, real-time monitoring and quick event detection of construction safetyhazards. Also, the health and safety dangers that come with building projects make it difficult for workers in the industry to be aware of potential risks and hazards in accordance with their daily schedules of work. This project comprises the creation of an audio-based event detection system to give daily safety concerns to workers and via the quick identification of construction accidents in order to fulfill the urgent demand of the industry to improve workersafety. The suggested framework, which is based on an evidence-driven methodology, integrates occupational injury and sickness manual data, which consists of historical construction accident data organized by different types of sources and occurrences. This paradigm was evidence-based and incorporated With a daily project schedule, it is possible to regularly contribute to improved construction safety monitoring through audio-based event detection and instantly notify construction employees of safety dangers at a relevant work zone. The framework can clearly categorize the condensed
			construction employees of safety dangers at a relevant work zone. The framework

12	Virtual	Orlean G.	2021	Workplaces are now safer and more
	Reality	Dela Cruz,	_021	productive thanks to technology. We
	(VR): A	et. al.		have been able to take on more
	Review on	ot. ar.		difficult assignments and work more
	its Use in			effectively together. Simulated 3D
	Constructio			site models have a significant ability
				to enhance hazard detection and the
	n Safety,			
	Turkish			cognition of worker danger,
	Journal of			according to visualization technology
	Computing			application. One of the
	and			breakthroughs that is widely
	Mathematic			accepted and contributes to fewer
	s Education			workplace accidents is virtual reality
	(TURCOM			(VR). Hence, this study thoroughly
	AT)			examines VR technology's
				contribution to construction safety
				through an analysis of its uses,
				advancements, and difficulties
				associated with its use. It is
				consistent with the goals of
				performing a thorough investigation
				of VR to close the knowledge gap
				that these cutting-edge technologies
				bring, such delivering sensitive
		DBC	PATE	information about its general
		PRO	PAII	conceptuseful uses, and potential
				restrictions. With any technical
				development, there are still a number
				of issues with the VR application
				that need to be resolved. Future
				research should take into account: 1)
				the inconsistency between the user's
				real movement and the virtual
				animation; 2) the study's narrow
				scope, which leaves out other
				important elements; 3) the study's
				labor-intensiveness, comparatively
				high cost, and upkeep; and 4) other
				relevant considerations technical
				complexity
				complexity

13	Analyzing	Jeffrey	2019	The Malaysian construction business is
	the	Boon Hui		stigma-laden 'dangerous, filthy and
	fundament	Yap, Wen		demanding' (3 D) with a significant
	al elements	Kai Lee		percentage of blue-collar migrant
	impacting	Tan Lee		employees. The public's perspective is
	safety			1
	performanc			being weakened by subpar safety
	e in			performance. The goal of this study is to
	building			assess the existing degree of safety
	constructio			consciousness in the construction industry,
	n Production			identify the key variables influencing
	Planning &			safety performance, and assess
	Control			prospective safety awareness-boosting
	Journal			solutions. A thorough literature analysis
				led to the first discovery of 27 causesA
				questionnaire survey was then used to
				assess how construction workers saw the
				elements that affected safety performance
				and potential solutions to raise knowledge
				of safety, where a lack of understanding of
				the hierarchy of controls still existed.
				Personal protective equipment (PPE), the
				working environment, employee attitudes,
				communication, and equipment
				maintenance are the key safety concerns.
				Eight fundamental components were then
		PRO	PATE	discovered via an exploratory factor
				analysis. Installing a fall prevention
				system, having excellent communication,
				and performing routine safety inspections
			4	are the most effective preventive measures.
				Lastly, correlation tests were used to
				determine the connections between the
				components and preventative actions.

14	Earth and	P Mesaros,	2019	Due to the fact that the construction
	environmen	M		business is among the most
	tal science	Spisakova		hazardous in many nations, safety
	IOP	and D		in this sector is seen as being of
	Conference	Mackova		utmost importance. 19.5% of all
	Series:			fatalities between 2000 and 2012
	Study of			were related to the construction
	Safety			business. Construction safety
	Hazards on			management, and by extension
	the			construction project management,
	Constructio			must include both safety variables
	n Site			influencing construction and
				techniques for assessing
		Г		construction safety hazards. The
				plan of o <mark>ccupational sa</mark> fety and
				health, o <mark>ne of S</mark> lovakia's
				construction management papers,
				addresses the analysis, assessment,
		DDA	DATE	and removal of construction safety
		PRO	PAIR	concerns.
				This study proposes a plan for
		Man-		occupational safety and health
				processing during the development
				of business centers. The input data is
				presented in one dimension of the
				building information model through
				the process of assessing safety risks,
				which should be a crucial component
				of integrated building design.

15	IOP	Abdul	2019	Regardless of the scale of the
		Rahim		project, crane utilization is
	Conference	Abdul		common and crucial in the
	Series:	Hamid,		construction business. The tower
	Earth and	Ridzuan		crane's effectiveness in tall
	Environme	Azhari,		structure construction is essential
	ntal Science	Rozana		to a project's success. The crane
	/ Malaysian	Zakaria,		operator must effectively manage
	constructio	Eeydzah		the crane and adhere to all safety
	n site crane	Aminudin,		instructions. Consequences of
	accidents:	Ramadhan		improperly performing the
	causes and	syah Putra		standards and procedures for crane
	consequenc	Jaya,		handling include loss of life,
	es	Logeswar		injury, and property losses. The
		an		awareness of the needto undertake
		Nagarajan,		this study in order to prevent this
// 4		Khairulza		problem from occurring was
		n Yahya,		raised by the rising frequency of
		Z <mark>aiton</mark>		crane acc <mark>idents in Mal</mark> aysia. In
		Haron and		order to <mark>analyze the </mark> accident
	_)	R <mark>iduan</mark>		statistics involving cranes in
		Yunus		Malaysian construction sites, this
				study wa <mark>s carried ou</mark> t. The
				Department of Occupational
			ATD	Safety and Health's official
		PRO F	'Al Ki	database of crane accident reports
				and document search was used in
				this study (DOSH). Two
				techniques, frequency analysis and
				content analysis, were used to
				analyze all of the data that had
				been gathered. The study's
				findings indicate that mobile
				cranes have the greatest number of
				crane accident cases—23—of any
				type of cranes. In Malaysia,
				structural collapse ranks first
				among the 28 causes of crane
				accidents as a major contributing
				factor. In an effort to reduce crane
				accidents

16	Is the Safe	Daniel W.	2022	Construction accidents in Hong Kong
	Working	Damer W.	2022	continue to be more common than
	Cycle a	M. Chan		accidents in other sectors.
	Cure-All	and		Nevertheless, since the introduction of
				·
	for Hong	Dougla.		many safety programs, such as the Safe
	Kong's	Aghimien		Working Cycle, accident rates within
	Problems			the sector have considerably dropped
	with			(SWC). In order to collect empirical
	Building			information on the use of SWC in
	?Site Safety			construction projects, the success of
				the safety initiative, and its
				advantages, a post-positivist
		≥ 111 ;		philosophical approach was chosen in
				this study. A questionnaire survey was
				also initiated.
				Descriptive statistics, mean scores,
				Mann-Whitney U- Tests, Kendall's
				concordance analyses, Chi-square
				values, Spearman rank-order
				correlation tests, and exploratory
				factor analyse <mark>s w</mark> ere use <mark>d t</mark> o analyze
				the data collected from 197
				construction participants. The results
				showed that SWC has been widely
		PRO	DATE	adopted in Hong Kong's building
		FRO	PAII	sector. Additionally, this safety
				initiative is successful because of the
				daily, weekly, and monthly
				inspections and supervisions as well
				as the safety committee meetings. The
				safety of frontline employees and an
				improvement in the organization's
				commitment to and reputation for
				safety can be included under the
				advantages of implementing SWC.
				The theoretical foundation provided
				by this study is beneficial for future
				research on the SWC's applicability to
				the whole construction sector.
				and annote combination bector.

17	An	Seyed	2020	The UK government has
	integrated	Hamidrez		acknowledged the difficulties of
	managemen t	a Ghaffar,		sustainable building, the necessity of
	of	Matthew		industrial growth, and the problems
	constructio n	Burman		of resource efficiency, and these
	and	Nuhu		issues are now at the forefront of
	demolition	Braimah		strategy and policy. The
	waste for			management of construction and
	resource			demolition waste (C&DW) is a key
	recovery is			aspect of the government's
	published in			sustainability plans. An investigation
	the Journal			of existing C&DW management
	of Cleaner			methods and knowledge of the
	Production			circular construction (re- use,
	article			recycling, and recovery of materials)
	"Pathways to			concept in the UK was conducted in
	Circular			this study using a mixed method
	Constructio			approach Relevant construction
	".n			industry stakeholders (from the
				contracting, demolition, and C&DW
				organizations) were chosen, and their
				opinions on circular construction-
				related issues were sought out to
				assist create shared visions and
		PRO	DATE	further promote sustainable behavior
			AII	in the industry. According to the
				study, government regulation of the
`				minimum level of reuse and
				recycling for each new project may
				significantly enhance circularity in
				the built environment. More
				precisely, attention should be paid to
				cost-effective process optimization
				and smart building demolition. This
				will allow for fair competition
				among the many parties involved
				and eventually result in investments
				in cutting-edge methods for resource
				recovery from C&DW.

- 10	T - 2	- ·	• • • •	
18	Impacts of	Bhargavi	2020	The COVID-19 epidemic has
	COVID-19	N.Kulkarn i,		sparked a worldwide crisis and
	pandemic	V.Anantha		generated social and economic
	on	rama		challenges that will eventually
	municipal			affect the environment. The
	solid waste			current study assesses existing
	managemen			municipal solid waste (MSW)
	t:			management procedures in the
	Opportuniti			context of this natural experiment,
	es and			with a focus on MSW treatment
	Challenges			and disposal facilities in a few
	Science of			industrialized and developing
	The Whole			nations.
	Environme			The data and information utilized in
	nt Journal			this study were gathered from a
				number of academic research
				papers from various fields,
				government and multinational
				agency publications, and news
				stories. Considering the paucity of
				research on the management of
				MSW during such pandemics, This
				essay covers several facets of
	50			managin <mark>g MSW agains</mark> t a global
			ATDI	backdrop of the COVID-19
		PRO P	AIRL	pandemic. The criteria of disease
	0//			transmission through solid waste
				management are identified, as well
				as the effects of an increase in
			141	medical waste on the existing
				municipal waste treatment and
				disposal systems.
				Moreover, based on earlier research
				on pandemic and catastrophe waste
				management, this paper also
				outlines difficulties and potential in
				the wake of the current epidemic

	T	T	1	
19	Artificial	Yue Pan,	2021	Construction engineering and
	intelligence' s	Limao		management (CEM) is undergoing a
	roles in	Zhang		quick digital revolution as a result of the
	constructio n			widespread usage of artificial
	engineering			intelligence (AI). As AI- based CEM
	and			solutions are the current area of study, a
	managemen t:			thorough understanding is required. In
	A critical			order to explain the current state of AI
	analysis and			adoption in the context of CEM and
	emerging			analyze its future research prospects, this
	tendencies			study offers a systematic evaluation
	tendencies			1 *
				under both scientometric and qualitative
				analysis. First, a scientometric evaluation
				of 4,473 journal articles from 1997 to
				2020 is conducted to investigate the
				features of keywords, journals, and
				clusters.
				The number of pertinent articles has
				increased dramatically, especially over
				the last ten years as the popularity of
				keywords has shifted from expert
				systems to building information
				modeling (BIM), digital twins, and other
				topics. Following that, a quick
				explanation of CEM is given, which may
				profit from the new AI trend in terms of
				automation, risk mitigation, high
				efficiency, digitization, and computer
				vision. Six popular research areas that
		PRO P	ATRI	significantly increase the benefit of AI in
				CEM have received particular attention:
				knowledge representation and reasoning,
				information fusion, computer vision,
				· · · · · ·
				natural language processing, intelligence
				optimization, and process mining. These
				themes aim to data-drivenly model,
				forecast, and optimize problems over the
				course of the whole complicated project
				lifecycle. Six important future research
				directions—smart robotics, cloud virtual
				and augmented reality (cloud VR/AR),
				artificial intelligence of things (AIoT),
				digital twins, 4D printing, and
				blockchains—are highlighted to
				continually facilitate the automation and
				intelligence in CEM. This will help to
				further close the gap between AI and
				CEM.

20	Risk	Sameh M.	2018	In the United Arab Emirates, there is
	evaluation and	El-		a significant trend toward
	identification	Sayegh,		environmentally friendly building
	in UAE	Solair		initiatives (UAE). Construction
	sustainable	Manjikian,		projects that are sustainable carry
	building	Ahmed		higher risk than conventional
	projects,	Ibrahim,		projects. This study aims to identify
	International	Ahmed		and evaluate the hazards associated
	Journal of	Abouelyo		with green building initiatives in the
	Construction	usr &		United Arab Emirates. This will
	Manageme nt	Raed		make it easier for project participants
		Jabbour		to handle these risks effectively.
				Based on a review of the literature, a
				list of thirty dangers was created.
				Management, technical, green teams,
				green materials, and
				regulatory/economic risks were
				divided into five categories. After
				that, a survey was created and
				distributed to UAE professionals.
				The respondents assessed each risk
				based on its likelihood of happening
				and its consequences. There were 44
				replies gathered. Based on the risk
		PRO P	ATRI	severity, the thirty dangers were
				graded (probability multiplied by
				impact). The top five hazards
				include a lack of money from the
				client, incomplete or inaccurate
				information about sustainable
				design, changes in design, an
				unreasonable tight deadline for
				sustainable construction, and a lack
				of a clear scope definition for
				sustainable building. An essential
				component of project risk
				management is risk identification
				and evaluation. This makes it
				possible to plan and regulate risk
				responses appropriately